We welcome the new LSA Fellows Dr. Syed Ahsan Raza and Dr. Anil Annamneedi, who will start their projects in our lab in January 2020.

Dr. Ahsan Raza

During our everyday life experiences, we tend to remember events with fine details that occur close in time. However, events that occurred long time ago are remembered with vague details and thus are prone to memory loss. With the passage of time, the fear memory losses its specificity resulting in a generalized fear and inappropriate anxiety, a hallmark of posttraumatic stress disorder (PTSD). In this LSA-CBBS project, neuronal circuits in the dentate gyrus will be investigated which plays important role in discriminating between different stimuli. This project investigates how the activity of neuronal circuits in the dente gyrus and its associated brain regions change over time after a fear experience. For this purpose, suitable genetic mouse model, chemogenetic intervention, behavioral readout and sophisticated electrophysiological techniques will be used to find cellular entry points for a possible intervention to specifically prevent fear generalization. This will not only increase our understanding of basic circuit mechanisms of memory formation but will also help in a longer run to the development of urgently needed new therapeutic methods for PTSD.

 

 

Dr. Anil Annamneedi

Tight synaptic connections between neurons are essential for proper brain functioning. Both sides of the synapse, i.e., pre and post synaptic sides composed of complex protein machinery, which are important for normal cognitive performance of brain. Several brain diseased conditions like neuropsychiatry, lead to synaptic protein dysregulation resulting in impaired brain functioning. Mechanisms of such conditions includes changes in GABAergic inhibitory system, with poor knowledge about the presynaptic proteins’ dysfunction. The focus of this CBBS funded LSA project is to understand the presynaptic proteins’ role, using knockout mouse models for a presynaptic Bassoon protein in GABAergic neuronal types. Pharmacological interventions will be performed together with behavioural, immunohistochemical, electrophysiological and transcriptome analyses.