New Paper online: Allostatic Regulation of GAD65 by Juvenile Stress

Our newest paper is online: Allostatic gene regulation of inhibitory synaptic factors in the rat ventral hippocampus in a juvenile/adult stress model of psychopathology by Anne Albrecht, Menahem Segal and Oliver Stork

Here we show the region-specific long-term regulation of GABA-related molecular factors in the hippocampus after a juvenile stress experience. Our data highlight the role of ventral hippocampus and mechanisms that control local excitation/inhibition balance in development in adaptive and maladaptive stress responding.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.15091

Abstract

Early life stress is an important vulnerability factor for the development of anxiety disorders, depression and late-onset cognitive decline. Recently we demonstrated that juvenile stress (JS) lastingly enhanced long-term potentiation via reduction of steady-state glutamine synthetase mRNA expression and the associated dysregulation of the astrocytic glutamate-glutamine cycle in the rat ventral CA1. We now investigated the regulation of steady-state mRNA expression of neuronal gene products that determine GABAergic and glutamatergic neurotransmission in layers of the ventral and dorsal CA1 after JS. We further studied their interaction with stress in young adult age (AS) to address their putative role in psychopathology development. Strikingly, mRNA levels of the glutamic acid decarboxylase (GAD) isoforms GAD65 and of the GABA-A receptor a2 (Gabra2) were increased after single JS or AS, but not after combined JS/AS stress experience. In fact, JS/AS resulted in layer-specific reduction of Gabra2 and also of Gabra1 mRNA levels in the ventral CA1. Furthermore, GAD65 and Gabra2 mRNAs were correlated with glutamatergic AMPA and NMDA receptor subunit mRNAs after single JS and AS, but not after combined JS/AS. Together, these data indicate a loss of allostatic regulation of steady-state mRNA levels of key GABAergic components that may result in a dysregulation of excitation/ inhibition balance in the ventral CA1 upon dual stress exposure. Finally, individual differences in local glucocorticoid receptor mRNA expression may contribute to this regulation.